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LETI'ER TO THE EDITOR 

Critical behaviour of the Baxter model with impurity lattice 
bonds 

Vik S Dotsenko and V1 S Dotsenko 
Landau Institute for Theoretical Physics, Academy of Sciences of the USSR, Moscow, USSR 

Received 1 December 1983 

Abstrrct. From one point of view, the Baxter model is a model of two coupled 2D Ising 
lattices. It is known that the specific heat exponent a in this model is proportional to the 
coupling between the lattices g, for small coupling: a = 4g/?r<< 1. In this letter the critical 
behaviour of the specific heat of the Baxter model with impurity lattice bonds is studied 
and it is found that the Harris criterion does not hold in this case. In particular for a - g < 0 
the critical specific heat of the pure model C,,,,,,( 7 )  - - [ T ~ " ( ~ ) ' " [ T  = ( T -  Tc)/ T,] changes 
to a function with stronger cusp singularity Cimp(7) --(ln In l / [TI) - ' ,  while according to 
the Harris criterion it should not change in this case. For a - g > 0 the change is from 
Cwre(~)-1~1-4g'S to Ci,,(~)-In In I/].[. 

The problem of phase transitions in weakly disordered systems has received consider- 
able attention in recent years. In the course of theoretical and experimental investiga- 
tion, substantial progress has been achieved. In the papers by Harris and Lubensky 
(1974), Khmelnitsky (1973, Lubensky (1973, Grinstein and Luther (1976) it was 
shown that the singularities in thermodynamic functions near the phase transition point 
are not necessarily 'rounded', but a new critical behaviour can be established which 
differs from that of the pure system. 

By general arguments, Harris (1974) had shown that the critical behaviour of 
systems with specific heat critical exponent apurc < 0 (specific heat is finite at T,) is not 
affected by impurities. The critical behaviour is expected to be modified by the 
randomness only in systems with divergent specific heat ( apure> 0). This criterion has 
been backed by &expansion studies near 4 ~ .  It was found that in the case of a > 0 
the new critical exponents are universal, dependent only on the number of spin 
components and dimensionality. Moreover, the new specific heat exponent aimp 
appeared to be negative, i.e. the specific heat was found to be finite at T, due to 
impurities. 

Exact logarithmic singularities for the Ising model with impurities in 4~ (and dipolar 
Ising model in 3 ~ )  have been found by Aharony (1976). The specific heat was found 
to be finite, having a non-analytic cusp behaviour at T,. The 3~ Ising model with 
impurities has been studied in detail by Newman and Riedel(l982) by an approximation 
technique. Their result simp = -0.09 (cf aPre = +0.11) has been recently confirmed 
(within errors) by an experiment on real magnetic crystals (Birgeneau et a1 1983). 

Therefore a widespread belief now exists that the Harris' criterion and the finiteness 
of the specific heat are rather general properties of systems with randomness. 

The ZD Ising model with impurities was of special interest since the pure system 
has an exact solution (Onsager 1944) and its specific heat critical exponent is zero. 
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The critical behaviour of this model has been found by the authors (Dotsenko and 
Dotsenko 1982). It was shown that the specific heat remains divergent, though in a 
weaker way: Cimp( T )  -In In 1/ I T \  [ T = ( T - Tc) /  T,], as compared to Onsager's singular- 

The Baxter model presents an interesting case in these studies. This model, which 
has been solved exactly by Baxter (1971), can be considered as two 2~ Ising models 
coupled by four-spin interactions (Kadanoff and Wegner 1971, Wu 1971, see also 
Baxter 1978). The strength of this coupling is described by some parameter g (the 
case of g = 0 corresponds to two independent 2~ Ising models). The critical exponents 
of the Baxter model are continuously dependent on g, and the specific heat exponent, 
which is proportional to g for small coupling (g<< l ) ,  can be made both positive and 
negative. The aim of the present letter is to find the critical behaviour of the Baxter 
model with small randomness, keeping g as a parameter, and compare the results with 
the general statements mentioned above. 

Because the scaling limit of the Baxter model near the critical point is described 
by the 2~ fermion (Thirring) model with four-fermion interaction (Luther and Peschel 
1975, Luther 1976) the renormalisation group methods similar to those used for the 
2~ Ising model with impurities (Dotsenko and Dotsenko 1983) can also be applied to 
this case. The results are rather unexpected. For g > 0, when the specific heat of the 
pure model is divergent (Cpure(~)-(~1-4g'lr), the specific heat of the model with 
impurities is still divergent, but logarithmically, Cimp(7) -In In 1/1.1. On the other 
hand, for g < 0 ( Cpure(7) - - 1 ~ 1 ~ ' ~ ' ' ~  is finite) the specific heat of the model with 
impurities does not remain the same, as one would expect on the basis of the Harris 
criterion, but changes to a stronger cusp singularity: Cimp(7) - -(ln In l/lT\)-'. There- 
fore the Harris criterion is not valid for the Baxter model with impurity bonds. 

In the representation of two coupled 2~ Ising lattices, the Baxter model is described 
by the following classical energy (see e.g. Baxter 1978) 

ity C p u r e ( 7 )  - In 1/1~1. 

Here cr, p = *1 are Ising variables. The first two terms correspond to two Ising models, 
and the sums go over nearest neighbours on two different interpenetrating square 
lattices. The third term is responsible for the coupling of the two models. 

In the scaling limit near the critical point the homogeneous Baxter model (T,,,. = 
Ty,y, = T )  can equivalently be described by one complex (Dirac) or two real (Majorana) 
fermion fields (each one having two spinor components) with the Euclidian action 

Here a^= y,d, = y l d l  + y2d2, y 1  = ox, y 2  = U', y 5  = y 1 y 2  = -by; U*, cry, crz are Pauli 
matrices; @=ICIr'y5, ) 7 = x r y s ;  m o - T = ( T = T c ) / T c ;  g0=2T4 for T4<< 1 (see Luther 
and Peschel 1975). Quenched fluctuations of Tx,xf and Ty,yr can be described, in the 
scaling limit, by quenched Gaussian fluctuations of 9 and x masses in the action (2) 
(see Dotsenko and Dotsenko 1983) 

1 - A  1 A m o + S m l ( x )  - mo+Sm2(x) **- 2 
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Here 

8m,( x)8mb( x') = 4A06a,b8( x - x'). (4) 

The constant Ao- (7- ( F ) 2 ) / (  F )2  describes the quenched bond fluctuations, and it 
is assumed to be small. For the model with impurity bonds, randomly distributed over 
the lattice, it implies that the concentration of impurities is small. 

After averaging the free energy over the randomness, the effective theory is 
described by the following replicated action (cf Dotsenko and Dotsenko 1983) 

( 5 )  
+? A0 c C ( $ A + A ) < i " + " )  + ( i A x A ) ( i B x B ) I ] .  

A I B = l  

In the final results one should put N = 0 (de Gennes 1972, Emery 1975). The theory 
(5) can be studied by renormalisation group methods. In the course of renormalisation 
an additional vertex appears 

( y o  = 0). One can easily derive the following renormalisation group equations for the 
model ( 5 ) ,  (6): 

dg/d5 = -vi r ) g A  

dA 2(2-N) 2 N  4 
d5  I T  7T 7T 

A2 +- y 2  +-gy -=- 

d l n m  2(1-N) 2 N  2 
d5  7T I T I T  

A + - y  + -g. --- - 

The initial conditions are g(0) = go, A(0)  = Ao, y(0) = 0; 5 is the renormalisation group 
parameter. For N = 0 and 5 = &x the equations become 

dg/dx = -gA, dA/dx = -A2+ gy, dY/dx = - yA + gA (8) 

d In mldx =-A/2+g/2. (9) 

A2 = g2(ln2(go/g) + Ai/gg). 

Combining these equations one obtains 

Y = g In (go/g), (10) 

The critical behaviour of thermodynamic functions is determined by the asymptotic 
behaviour of the solutions at 5 + a. To find the relevant terms it is enough to replace 
the second relation in (10) by 

A=lgl In (go/g). 

From (8) and (1 1) we obtain 
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The asymptotic solutions are given by 

t l n t  In t In t A-"(l+$-).  t 

Here t = gox = (4g0/.rr)[. Now from (9) and (13) we derive 

The singular part of the specific heat is given by (cf. Larkin and Khmelnitskii 1969) 

Using (14) we obtain 

As usual for statistical systems with small disorder, the new critical behaviour (16)' 
(17) is established in the narrow temperature interval near T, 

Note that the results are sensitive whether the random distribution of the spin couplings 
{Tx,xg, Ty,y.} in (1) is independent of the two Ising lattices or whether it is not. The 
critical behaviour of the Baxter model with completely correlated distributions (i.e. 
8ml(x)Sm2(x') = 8ml(x)8ml(xf) = 8mz(x)8mz(x')) turns out to be different. In this 
case the model is described by the replicated action ( 5 )  with the random vertex 

It means that in equations (7) one has to take A(0)  = y(0) = Ao. The critical specific 
heat for this kind of Baxter model with impurities is found to be given by 

1 



Letter to the Editor L305 

In the case of go < 0 the specific heat remains finite, but the critical exponent is 
altered due to impurities in a non-universal way i.e. crimp- g* depends on the amount 
of randomness A,, (concentration of impurity bonds). 

Note, however, that this kind of critical behaviour corresponds to a very special 
case of complete correlation in the bond distributions on the two lattices: SmlGml = 
SmlSmz. It is absolutely unstable with respect to the introduction of any difference 
SmlSml - 6mlSmz > 0. One can check that the Baxter model with a partial correlation 
of the bond distributions ( SmlSml > SmlSmz > 0) exhibits, as T + 0 (after some cross- 
over region), the same critical behaviour (16), (17) as the model with SmlGmz=O 
considered above. 

In this letter we have found the critical specific heat of the Baxter model with 
impurity bonds-formulae (12) and (13). In a certain sense it is 'more universal' than 
that of the homogeneous model since it depends only on the sign of the coupling go. 
On the positive side (a,,,, - go > 0) the specific heat remains divergent, though in a 
much weaker way, as In In l / l T l ,  the same as in the Ising Model with impurities 
(Dotsenko and Dotsenko 1982). On the negative side ( apure - g p  < 0) the specific heat 
remains finite but the cusp singularity [-(ln In l/l~I)-'] is stronger than that in the 
pure model. 

The quantitative result obtained here is that the Harris criterion does not hold in 
the present case. Whether this breakdown of the Harris criterion is a peculiar property 
of the Baxter model, or whether it is a rather general feature of the 2~ statistics, 
remains an open question. 

-- 
-- 
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